Layer netify objects together to create a multilayer network
layer_netlet.Rd
layer_netlet
takes in two netify objects and
layers them together to create a multilayer network
Examples
# cross-sectional example
data(icews)
icews_10 <- icews[icews$year==2010,]
# generate netify objects that will be layered together
icews_verbCoop <- netify(
dyad_data=icews_10, actor1='i', actor2='j',
symmetric=FALSE, weight='verbCoop',
nodal_vars=c('i_log_gdp', 'i_log_pop'),
dyad_vars=c('verbConf') )
icews_matlCoop <- netify(
dyad_data=icews_10, actor1='i', actor2='j',
symmetric=FALSE, weight='matlCoop',
nodal_vars='i_polity2',
dyad_vars=c('matlConf') )
# layer together cross-sec netify objects together
icews_verbCoop_matlCoop <- layer_netlet(
netlet_list=list(icews_verbCoop, icews_matlCoop),
layer_labels=c('verbCoop', 'matlCoop') )
# dimensions of the multilayer network from the
# cross-sectional case will be a
# (number of actors) x (number of actors) x (number of layers)
dim(get_raw(icews_verbCoop_matlCoop))
#> [1] 152 152 2
# longitudinal array example
icews_verbCoop_longit_a <- netify(
dyad_data=icews, actor1='i', actor2='j', time='year',
symmetric=FALSE, weight='verbCoop',
nodal_vars=c('i_log_gdp', 'i_log_pop'),
dyad_vars=c('verbConf'),
output_format='longit_array' )
icews_matlCoop_longit_a <- netify(
dyad_data=icews, actor1='i', actor2='j', time='year',
symmetric=FALSE, weight='matlCoop',
nodal_vars=c('i_polity2'),
dyad_vars=c('matlConf'),
output_format='longit_array' )
# layer together
icews_verbCoop_matlCoop_longit_a <- layer_netlet(
netlet_list=list(icews_verbCoop_longit_a, icews_matlCoop_longit_a),
layer_labels=c('verbCoop', 'matlCoop') )
# dimensions of the multilayer network from the
# longitudinal array case will be a
# (number of actors) x (number of actors) x (number of layers) x
# (number of time periods)
dim(get_raw(icews_verbCoop_matlCoop_longit_a))
#> [1] 152 152 2 13
# longitudinal list example
# generate similar longitudinal list versions
icews_verbCoop_longit_l <- netify(
dyad_data=icews, actor1='i', actor2='j', time='year',
symmetric=FALSE, weight='verbCoop',
nodal_vars=c('i_log_gdp', 'i_log_pop'),
dyad_vars=c('verbConf') )
icews_matlCoop_longit_l <- netify(
dyad_data=icews, actor1='i', actor2='j', time='year',
symmetric=FALSE, weight='matlCoop',
nodal_vars=c('i_polity2'),
dyad_vars=c('matlConf') )
# layer together
icews_verbCoop_matlCoop_longit_l <- layer_netlet(
netlet_list=list(icews_verbCoop_longit_l, icews_matlCoop_longit_l),
layer_labels=c('verbCoop', 'matlCoop') )
# dimensions of the multilayer network from the
# longitudinal list case will be a
# (number of time periods) list of
# (number of actors) x (number of actors) x (number of layers) arrays
names(get_raw(icews_verbCoop_matlCoop_longit_l))
#> [1] "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009" "2010" "2011"
#> [11] "2012" "2013" "2014"
dim(get_raw(icews_verbCoop_matlCoop_longit_l)$'2010')
#> [1] 152 152 2
# information on layer labels can be accessed
# from the `layers` attribute
attr(icews_verbCoop_matlCoop, 'layers')
#> [1] "verbCoop" "matlCoop"
attr(icews_verbCoop_matlCoop_longit_l, 'layers')
#> [1] "verbCoop" "matlCoop"