Skip to contents

Convert netify object to amen structured input

Usage

prep_for_amen(netlet)

Arguments

netlet

An R object

Value

object ready for analysis with amen

Author

Ha Eun Choi, Cassy Dorff, Colin Henry, Shahryar Minhas

Examples


# load icews data
data(icews)

# filter to a year for cross-sec example
icews_10 <- icews[icews$year == 2010,]

# netify object
icews_matlConf <- netify(
  dyad_data = icews_10, 
  actor1 = 'i', actor2 = 'j', 
  symmetric = FALSE, weight = 'matlConf',
  nodal_vars = c('i_polity2', 'i_log_gdp', 'i_log_pop'),
  dyad_vars = c('matlCoop', 'verbCoop', 'verbConf'),
  dyad_vars_symmetric = c(FALSE, FALSE, FALSE) )

# convert to amen input
for_amen <- prep_for_amen(icews_matlConf)

# for_amen$Y is the matrix of dyadic weights
dim(for_amen$Y)
#> [1] 152 152

# for_amen$Xdyad is the array of dyadic attributes
dim(for_amen$Xdyad)
#> [1] 152 152   3

# for_amen$Xrow is the matrix of nodal attributes for rows
dim(for_amen$Xrow)
#> [1] 152   3

# for_amen$Xcol is the matrix of nodal attributes for columns
dim(for_amen$Xcol)
#> [1] 152   3

# generate a longitudional, directed and weighted network
# where the weights are matlConf and results are organized
# in an array and we have both dyadic and nodal attributes
icews_matlConf_longit <- netify(
  dyad_data=icews,
  actor1='i', actor2='j', time='year',
  symmetric=FALSE, weight='matlConf',
  nodal_vars=c('i_polity2', 'i_log_gdp', 'i_log_pop'),
  dyad_vars=c('matlCoop', 'verbCoop', 'verbConf'),
  dyad_vars_symmetric=c(FALSE, FALSE, FALSE) )

# convert to amen input
for_amen_longit <- prep_for_amen(icews_matlConf_longit)

# for_amen_longit$Y is the array of dyadic weights
dim(for_amen_longit$Y)
#> [1] 152 152  13

# for_amen_longit$Xdyad is the array of dyadic attributes
dim(for_amen_longit$Xdyad)
#> [1] 152 152   3  13

# for_amen_longit$Xrow is the array of nodal attributes for rows
dim(for_amen_longit$Xrow)
#> [1] 152   3  13

# for_amen_longit$Xcol is the array of nodal attributes for columns
dim(for_amen_longit$Xcol)
#> [1] 152   3  13