Package index
-
IR90s
- International relations in the 90s
-
Xbeta()
- Linear combinations of submatrices of an array
-
Xcol
- Column covariates
-
Xdyad
- Dyadic covariates
-
Xrow
- Row covariates
-
Y
- Relational matrix
-
YX_bin
- binary relational data and covariates
-
YX_bin_list
- Binary relational data list
-
YX_bin_long
- binary relational data and covariates
-
YX_cbin
- Censored binary nomination data and covariates
-
YX_frn
- Fixed rank nomination data and covariates
-
YX_nrm
- normal relational data and covariates
-
YX_ord
- ordinal relational data and covariates
-
YX_rrl
- row-specific ordinal relational data and covariates
-
ab_plot()
- Visualize sender and receiver random effects
-
addhealthc3
- AddHealth community 3 data
-
addhealthc9
- AddHealth community 9 data
-
ame()
- AME model fitting routine
-
array_to_list()
- Convert array to list.
-
check_format()
- Check formatting of input objects into ame_repL function
-
coldwar
- Cold War data
-
comtrade
- Comtrade data
-
design_array()
- Computes the design socioarray of covariate values
-
design_array_listwisedel()
- Computes the design socioarray of covariate values
-
dutchcollege
- Dutch college data
-
el2sm()
- Edgelist to sociomatrix
-
get_design_rep()
- Create design array for replicate data
-
get_fit_object()
- Get fitted object from MCMC results
-
get_start_vals()
- Get fitted object from MCMC results
-
gof_plot()
- Visualize goodness-of-fit statistics for AME and LAME models
-
gof_stats()
- Goodness of fit statistics
-
init_dynamic_ab_cpp()
- Initialize dynamic additive effects with AR(1) structure
-
init_dynamic_positions()
- Initialize dynamic latent positions with AR(1) structure
-
lame()
- AME model fitting routine for longitudinal relational data
-
lazegalaw
- Lazega's law firm data
-
ldZgbme()
- log density for GBME models
-
list_to_array()
- Convert list to array
-
llsrmRho()
- SRM log likelihood evaluated on a grid of rho-values
-
mhalf()
- Symmetric square root of a matrix
-
plot(<ame>)
- Plot comprehensive diagnostics for an AME model fit
-
plot(<lame>)
- Plot comprehensive diagnostics for a LAME model fit
-
precomputeX()
- Precompute design matrix statistics
-
print(<ame>)
- Print method for AME objects
-
print(<ame.sim>)
- Print methods for AME and LAME simulation objects
-
print(<lame>)
- Print method for LAME objects
-
print(<summary.ame>)
- Print method for summary.ame objects
-
print(<summary.lame>)
- Print method for summary.lame objects
-
rSab_fc()
- Gibbs update for additive effects covariance
-
rSuv_fc()
- Gibbs update for multiplicative effects covariance
-
rUV_dynamic_fc()
- Gibbs sampling of dynamic U and V with AR(1) evolution
-
rUV_dynamic_fc_cpp()
- Update dynamic latent positions using AR(1) process
-
rUV_fc()
- Gibbs sampling of U and V
-
rUV_rep_fc()
- Gibbs sampling of U and V
-
rUV_sym_fc()
- Gibbs sampling of U and V
-
rZ_bin_fc()
- Simulate Z based on a probit model
-
rZ_cbin_fc()
- Simulate Z given fixed rank nomination data
-
rZ_frn_fc()
- Simulate Z given fixed rank nomination data
-
rZ_nrm_fc()
- Simulate missing values in a normal AME model
-
rZ_ord_fc()
- Simulate Z given the partial ranks
-
rZ_pois_fc()
- Gibbs update for latent variable in a Poisson AME model
-
rZ_rrl_fc()
- Simulate Z given relative rank nomination data
-
rZ_tob_fc()
- Simulate Z based on a tobit model
-
raSab_bin_fc()
- Simulate a and Sab from full conditional distributions under bin likelihood
-
raSab_cbin_fc()
- Simulate a and Sab from full conditional distributions under the cbin likelihood
-
raSab_frn_fc()
- Simulate a and Sab from full conditional distributions under frn likelihood
-
rbeta_ab_fc()
- Conditional simulation of additive effects and regression coefficients
-
rbeta_ab_rep_fc()
- Gibbs sampling of additive row and column effects and regression coefficient with independent replicate relational data
-
rmvnorm()
- Simulation from a multivariate normal distribution
-
rrho_fc()
- Griddy Gibbs update for dyadic correlation
-
rrho_mh()
- Metropolis update for dyadic correlation
-
rrho_mh_rep()
- Metropolis update for dyadic correlation with independent replicate data
-
rs2_fc()
- Gibbs update for dyadic variance
-
rs2_rep_fc()
- Gibbs update for dyadic variance with independent replicate relational data
-
rwish()
- Simulation from a Wishart distribution
-
sample_dynamic_ab_cpp()
- Sample dynamic additive effects with AR(1) evolution
-
sample_rho_ab_cpp()
- Sample AR(1) parameter for dynamic additive effects
-
sample_rho_uv()
- Sample AR(1) parameter for dynamic latent factors
-
sample_sigma_ab_cpp()
- Sample innovation variance for dynamic additive effects
-
sample_sigma_uv()
- Sample innovation variance for dynamic latent factors
-
sampsonmonks
- Sampson's monastery data
-
sheep
- Sheep dominance data
-
simY_bin()
- Simulate a network, i.e. a binary relational matrix
-
simY_frn()
- Simulate an relational matrix based on a fixed rank nomination scheme
-
simY_nrm()
- Simulate a normal relational matrix
-
simY_ord()
- Simulate an ordinal relational matrix
-
simY_pois()
- Simulate a Poisson relational matrix
-
simY_rrl()
- Simulate an relational matrix based on a relative rank nomination scheme
-
simY_tob()
- Simulate a tobit relational matrix
-
simZ()
- Simulate Z given its expectation and covariance
-
simulate(<ame>)
- Simulate networks from a fitted AME model
-
simulate(<lame>)
- Simulate longitudinal networks from a fitted LAME model
-
sm2el()
- Sociomatrix to edgelist
-
summary(<ame>)
- Summary of an AME object
-
summary(<ame.sim>)
- Summary method for AME simulations
-
summary(<lame>)
- Summary of a LAME object
-
summary(<lame.sim>)
- Summary method for LAME simulations
-
trace_plot()
- MCMC trace plots and density plots for AME/LAME model parameters
-
uv_plot()
- Visualize multiplicative effects (latent factors) from AME models
-
zscores()
- rank-based z-scores